Phylogenetic Engineering of the Ribulose-1,5-bisphosphate Carboxylase/Oxygenase Large Subunit in <i>Chlamydomonas Reinhardtii</i>

نویسندگان

  • Boon Hoe Lim
  • Robert J. Spreitzer
چکیده

Thirty-four residues in the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) may account for the kinetic differences between Rubisco enzyme from green algae and land plants. By substituting these "phylogenetic residues" as groups and combinations of groups in the large subunit of the green alga Chlamydomonas reinhardtii with those of land-plant Rubisco, the functions and relationships of these "phylogenetic groups" were determined. A phylogenetic-group substitution at the base of catalytic loop 6 of the large subunit decreases the CO 2 /O 2 specificity of the enzyme, but function is restored by a further phylogenetic-group substitution at the carboxy-terminal tail. Therefore, these two regions of the large subunit, which sandwich loop 6, are complementary. In addition, combining substitutions at the base of loop 6 and the large/small-subunit interface region produces a mutant enzyme that has to be complemented by the land-plant small subunit for function in Chlamydomonas. On the other hand, substitutions in -helix G of the large subunit reduce the holoenzyme level, and, because Chlamydomonas mutants with additional substitutions in α-helices 7 and 8 cannot be recovered as photosynthetic-transformants, the three α helices appear to influence holoenzyme assembly. A previous study showed that substituting five large-subunit residues and a small-subunit loop with land-plant identities produced an enzyme (termed "penta/ABSO") with land-plant catalytic properties. In the present study, through structural dissection, it is concluded that all the residues substituted in penta/ABSO are required for the shift towards land-plant catalysis. Among the residues substituted in penta/ABSO is methyl-Cys-256, which indicates that posttranslational modifications of the large subunit may also play a role in catalysis. Further study of cysteine methylation and proline hydroxylation showed that mutations of methyl-Cys-256 and hydroxy-Pro-104 influence catalysis. The current study complements previous knowledge about Rubisco, and provides further structural targets for the beneficial engineering of Rubisco. iv ACKNOWLEDGEMENTS I am grateful to my Ph. D. advisor, Dr. Robert J. Spreitzer, for providing the opportunity to undertake such an interesting and challenging project. His generosity, patience, and guidance have been essential to the success of this research, and for my development as a scientist. I am also thankful to my committee members, Drs. for their time and willingness to evaluate the research as it progressed, especially to Drs. Stone and Wilson for critically reading this dissertation. Of course, this research would not be possible without the previous work conducted by past members in our laboratory. Special thanks is due to …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of structural and functional divergence far from the large subunit active site of ribulose-1,5-bisphosphate carboxylase/oxygenase.

Despite conservation of three-dimensional structure and active-site residues, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) enzymes from divergent species differ with respect to catalytic efficiency and CO2/O2 specificity. A deeper understanding of the structural basis for these differences may provide a rationale for engineering an improved enzyme, thereby leading to a...

متن کامل

Nuclear-gene mutations suppress a defect in the expression of the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate Carboxylase/Oxygenase

The green alga Chlamydomonas reinhardtii mutant 76-5EN lacks photosynthesis because of a nuclear-gene mutation that specifically inhibits expression of the chloroplast gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39). Photosynthesis-competent revertants were selected from mutant 76-5EN to explore the possibility of increasing Rubisco expr...

متن کامل

Reduced CO2/O2 specificity of ribulose-bisphosphate carboxylase/oxygenase in a temperature-sensitive chloroplast mutant of Chlamydomonas.

The Chlamydomonas reinhardtii chloroplast mutant 68-4PP is phenotypically indistinguishable from wild type at 25 degrees C but fails to grow photosynthetically at 35 degrees C. It had about 30% of the wild-type level of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) holoenzyme and carboxylase activity when grown at 25 degrees C, but less than 15% when grown at 35 degrees C. Pulse...

متن کامل

Elimination of the Chlamydomonas gene family that encodes the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase.

Ribulose-1,5-bisphosphate carboxylase/ oxygenase (EC 4.1.1.39) is the key photosynthetic enzyme that catalyzes the first step of CO2 fixation. The chloroplast-localized holoenzyme of plants and green algae contains eight nuclear-encoded small subunits and eight chloroplast-encoded large subunits. Although much has been learned about the enzyme active site that resides within each large subunit,...

متن کامل

Directed mutagenesis of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase. Loop 6 substitutions complement for structural stability but decrease catalytic efficiency.

The structure of active-site loop 6 plays a role in determining the CO2/O2 specificity of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39). Rubisco from the green alga Chlamydomonas reinhardtii differs from higher plant Rubisco within the loop 6 region, and the C. reinhardtii enzyme has a CO2/O2 specificity 25% lower than that of higher plant enzymes. To examin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016